SpongeBob SquarePants
Rss

Jumat, 15 Maret 2013

Karbohidrat


  •  Uji Kualitatif Karbohidrat


  • Uji Fehling
Salah satu identifikasi dari gula pereduksi yaitu dengan uji fehling. Gula pereduksi yaitumonosakarida dan disakarida kecuali sukrosa dapat ditunjukkan dg pereaksi Fehling .Gula pereduksi bereaksi dg pereaksi Fehling menghasilkan endapan merah bata (Cu2O).
Selain Pereaksi Fehling, gula pereduksi juga bereaksi positif dg pereaksi Benedict danTollens.
Uji Fehling bertujuan untuk mengetahui adanya gugus aldehid. Reagent yangdigunakan dalam pengujian ini adalah Fehling A (CuSO4) dan Fehling B (NaOH danKNa tartarat)


  •   Uji Tollens
Uji ini untuk positif terhadap karbohidrat pentosa yang membedakannya dengan heksosa.Aldehidadapat mereduksi pereaksi Tollens sehingga membebaskan unsur perak (Ag).Pereaksi tollens,pengoksidasi ringan yang digunakan dalam uji ini, adalah larutan basadari perak nitrat.Larutannya jernih dan tidak berwarna. Untuk mencegah pengendapanion perak sebagioksida pada suhu tinggi, maka ditambahkan beberapa tetes larutanamonia. Amoniamembentuk kompleks larut air dengan ion perak.Pereaksi Tollensmengandung ion diamminperak(I), Ion ini dibuat dari larutanperak (I) nitrat. Caranyadengan memasukkan setetes larutan natrium hidroksida ke dalamlarutan perak (I) nitratyang menghasilkan sebuah endapan perak (I) oksida, dan selanjutnyatambahkan larutanamonia encer secukupnya untuk melarutkan ulang endapan tersebut.Pereaksi Tollens sering disebut sebagai perak amoniakal. Endapan perak pada uji iniakanmenempel pada tabung reaksi yang akn menjadi cermin perak. Oleh karena ituPereaksiTollens sering juga disebut pereaksi cermin perak.
Reaksi :



  • Uji Iodium
Uji atau tes ini digunakan untuk memisahkan amilum atau pati yang terkandung dalam larutan tersebut. Reaksi positifnya ditandai dengan adanya perubahan warna menjadi biru. Warna biru yang dihasilkan diperkirakan adalah hasil dari ikatan kompleks antara amilum dengan iodin. Sewaktu amilum yang telah ditetesi iodin kemudian dipanaskan, warna yang dihasilkan sebagai hasil dari reaksi yang positif akan menghilang.
Dan sewaktu didinginkan warna biru akan muncul kembali. Di dalam amilum sendiri terdiri dari dua macam amilum yaitu amilosa yang tidak larut dalam air dingin dan amilopektin yang larut dalam air dingin. Ketika amilum dilarutkan dalam air, amilosa akan membentuk micelles yaitu molekul-molekul yang bergerombol dan tidak kasat mata karena hanya pada tingkat molekuler.
Micelles ini dapat mengikat I2 yang terkandung dalam reagen iodium dan memberikan warna biru khas pada larutan yang diuji. Pada saat pemanasan, molekul-molekul akan saling menjauh sehingga micellespun tidak lagi terbentuk sehingga tidak bisa lagi mengikat I2. Akibatnya warna biru khas yang ditimbulkan menjadi menghilang.
Micelles akan terbentuk kembali pada saat didinginkan dan warna biru khaspun kembali muncul. Warna biru khas yang ditimbulkan sebagai hasil dari reaksi positif, juga akan hilang jika larutan yang telah positif dalam pengujian iod ditambah dengan NaOH. Ion Na+ yang bersifat alkalis akan mengikat iodium sehingga warna biru khas akan memudar dan hilang.
Reaksi:



  • Uji Kuantitatif Karbohidrat :
o   Gula Reduksi
Adalah senyawa organik terdiri dari unsur karbon, hidrogen, dan oksigen. contoh; glukosa C6H12O6, sukrosa C12H22O11, sellulosa (C6H10O5)n. Rumus umum karbohidrat Cn(H2O)m. Karena komposisi yang demikian, senyawa ini pernah disangka sebagai hidrat karbon, tetapi sejak 1880, senyawa tersebut bukan hidrat dari karbon. Nama lain dari karbohidrat adalah sakarida, berasal dari bahasa Arab "sakkar" artinya gula. Karbohidrat sederhana mempunyai rasa manis sehingga dikaitkan dengan gula. Melihat struktur molekulnya, karbohidrat lebih tepat didefinisikan sebagai suatu polihidroksialdehid ataupolihidroksiketon. Contoh glukosa; adalah suatu polihidroksi aldehid karena mempunyai satu gugus aldehid da 5 gugus hidroksil (OH).
o   Gula Invert
Gula invert adalah Sebuah campuran bagian yang sama dari glukosa dan fruktosa yang dihasilkan dari hidrolisis sukrosa.  Hal ini ditemukan secara alami dalam buah-buahan dan madu dan diproduksi secara buatan untuk digunakan dalam industri makanan. Dibandingkan dengan prekursor, sukrosa, gula invert lebih  manis dan produk-produknya cenderung tetap lembab dan kurang rentan terhadap kristalisasi.  Oleh karena itu dipakai oleh tukang roti , yang mengacu pada sirup sebagai atau sirup invert trimoline.  
Campuran glukosa dan fruktosa yang diproduksi oleh hidrolisis sukrosa, 1,3 kali lebih manis daripada sukrosa.  Disebut demikian karena aktivitas optik terbalik dalam proses.  Hal ini penting dalam pembuatan kembang gula, dan terutama permen direbus , sejak kehadiran 10-15% gula invert maka dapat mencegah kristalisasi sukrosa.
Dalam istilah teknis, sukrosa adalah disakarida , yang berarti bahwa itu adalah molekul yang berasal dari dua gula sederhana monosakarida. Dalam kasus sukrosa, monosakarida blok bangunan ini adalah fruktosa dan glukosa.  Pemecahan sukrosa adalah reaksi hidrolisis . hidrolisis dapat diinduksi hanya dengan pemanasan larutan sukrosa, tetapi lebih umum, katalis ditambahkan untuk mempercepat konversi. Secara biologis katalis yang ditambahkan disebut sucrases (pada hewan) dan invertases (pada tumbuhan). Sucrases dan invertases adalah jenis hidrolase glikosida enzim. Acid , seperti terjadi di jus lemon atau cream of tartar , juga mempercepat konversi sukrosa untuk membalikkan.
Gula invert dibuat dengan menggabungkan suatu sirup gula dengan sedikit asam (seperti cream of tartar atau jus lemon) dan pemanasan.  Ini membalik, atau rusak, maka sukrosa menjadi dua komponen, glukosa dan fruktosa , sehingga mengurangi ukuran kristal gula.  Karena struktur kristal halus, gula inversi menghasilkan produk yang lebih halus dan digunakan dalam membuat permen seperti fondant , dan beberapa sirup.  Proses pembuatan selai dan jeli otomatis menghasilkan invert gula dengan menggabungkan asam alami dalam buah dengan gula pasir dan pemanasan campuran. Invert sugar can usually be found in jars in cake-decorating supply shops. Gula invert biasanya dapat ditemukan dalam stoples di toko-toko pasokan kue-dekorasi.
Dalam istilah teknis, sukrosa adalah disakarida, yang berarti bahwa itu adalah molekul yang berasal dari dua gula sederhana monosakarida. Dalam kasus sukrosa, monosakarida blok bangunan ini adalah fruktosa dan glukosa.  The hidrolisis dapat diinduksi hanya dengan pemanasan larutan sukrosa, tetapi lebih umum, katalis ditambahkan untuk mempercepat konversi. Secara biologis katalis yang ditambahkan disebut sucrases (pada hewan) dan invertases (pada tumbuhan).  Sucrases dan invertases adalah jenis hidrolase glikosida enzim. Acid , seperti terjadi di jus lemon atau cream of tartar , juga mempercepat konversi sukrosa untuk membalikkan.

o   Luff Schoorl   
Penentuan kadar glukosa dilakukan dengan cara menganalisis sampel melalui pendekatan proksimat. Terdapat beberapa jenis metode yang dapat dilakukan untuk menentukan kadar gula dalam suatu sampel. Salah satu metode yang paling mudah pelaksanaannya dan tidak memerlukan biaya mahal adalah metode Luff Schoorl. Metode Luff Schoorl merupakan metode yang digunakan untuk menentukan kandungan gula dalam sampel. Metode ini didasarkan pada pengurangan ion tembaga (II) di media alkaline oleh gula dan kemudian kembali menjadi sisa tembaga. Ion tembaga (II) yang diperoleh dari tembaga (II) sulfat dengan sodium karbonat di sisa alkaline pH 9,3-9,4 dapat ditetapkan dengan metode ini. Pembentukan (II)-hidroksin dalam alkaline dimaksudkan untuk menghindari asam sitrun dengan penambahan kompleksierungsmittel. Hasilnya, ion tembaga (II) akan larut menjadi tembaga (I) iodide berkurang dan juga oksidasi iod menjadi yodium. Hasil akhirnya didapatkan yodium dari hasil titrasi dengan sodium hidroksida (Anonim 2010). 


o   Gula Pereduksi 

Gula pereduksi yaitu monosakarida dan disakarida kecuali sukrosa dapat ditunjukkan dengan pereaksi Fehling atau Benedict menghasilkan endapan merah bata (Cu2O). selain pereaksi Benedict dan Fehling, gula pereduksi juga bereaksi positif dengan pereaksi Tollens (Apriyanto et al 1989). Penentuan gula pereduksi selama ini dilakukan dengan metode pengukuran konvensional seperti metode osmometri, polarimetri, dan refraktrometri maupun berdasarkan reaksi gugus fungsional dari senyawa sakarida tersebut (seperti metode Luff-Schoorl, Seliwanoff, Nelson-Somogyi dan lain-lain). Hasil analisisnya adalah kadar gula pereduksi total dan tidak dapat menentukan gula pereduksi secara individual. Untuk menganalisis kadar masing-masing dari gula pereduksi penyusun madu dapat dilakukan dengan menggunakan metode Kromatografi Cair Kinerja Tinggi (KCTK). Metode ini mempunyai beberapa keuntungan antara lain dapat digunakan pada senyawa dengan bobot molekul besar dan dapat dipakai untuk senyawa yang tidak tahan panas (Gritter et al 1991 dalam Swantara 1995).
Alkalis. Dengan larutan glukosa 1%, peraksi Fehling menghasilkan endapan berwarna merah bata, sedangkan apabila digunakan larutan yang lebih encer misalnya larutan glukosa 0,1% endapan yang terjadi berwarna hijau kekuningan.





·         Definisi Karbohidrat
Karbohidrat ('hidrat dari karbon', hidrat arang) atau sakarida (dari bahasa Yunani σάκχαρον, sákcharon, berarti "gula") adalah segolongan besar senyawa organik yang paling melimpah di bumi. Karbohidrat memiliki berbagai fungsi dalam tubuh makhluk hidup, terutama sebagai bahan bakar (misalnya glukosa), cadangan makanan (misalnya pati pada tumbuhan dan glikogen pada hewan), dan materi pembangun (misalnya selulosa pada tumbuhan, kitin pada hewan dan jamur). Pada proses fotosintesis, tetumbuhan hijau mengubah karbon dioksida menjadi karbohidrat.
Secara biokimia, karbohidrat adalah polihidroksil-aldehida atau polihidroksil-keton, atau senyawa yang menghasilkan senyawa-senyawa ini bila dihidrolisis. Karbohidrat mengandung gugus fungsi karbonil (sebagai aldehida atau keton) dan banyak gugus hidroksil. Pada awalnya, istilah karbohidrat digunakan untuk golongan senyawa yang mempunyai rumus (CH2O)n, yaitu senyawa-senyawa yang n atom karbonnya tampak terhidrasi oleh n molekul air. Namun demikian, terdapat pula karbohidrat yang tidak memiliki rumus demikian dan ada pula yang mengandung nitrogen, fosforus, atau sulfur.

·         Klasifikasi karbohidrat :
1.  Monosakarida
Monosakarida merupakan karbohidrat paling sederhana karena molekulnya hanya terdiri atas beberapa atom C dan tidak dapat diuraikan dengan cara hidrolisis menjadi karbohidrat lain. Monosakarida dibedakan menjadi:
·          Aldosa Jika gugus karbonil merupakan aldehida, monosakarida
Contoh :
o   Glikosa

Glukosa, suatu gula monosakarida, adalah salah satu karbohidrat terpenting yang digunakan sebagai sumber tenaga bagi hewan dan tumbuhan. Glukosa merupakan salah satu hasil utama fotosintesis dan awal bagi respirasi. Bentuk alami (D-glukosa) disebut juga dekstrosa, terutama pada industri pangan.






Gambaran proyeksi Haworth struktur glukosa (α-D-glukopiranosa)


o   Galaktosa

Galaktosa memiliki 6 atom C (C6H12O 6 yang disebut heksosa, dan terdapat gugus aldehidasehingga digolongkan dalam aldosa. Perbedaan struktur galaktosa dan glukosa terletak padakonfigurasi gugus hidroksil pada atom C-4 (epimer).Struktur cincin galaktosaterbentuk karena reaksi antaragugus hidroksil atom C-5dengan gugus aldehid yangdisebut hemiasetal.












α-D-galaktosa


·         ketosa ialah jika gugus karbonil adalah keton, monosakarida.
Contoh :
o   fruktosa.

Fruktosa (bahasa Inggris: fructose, levulose), atau gula buah, adalah monosakarida yang ditemukan di banyak jenis tumbuhan dan merupakan salah satu dari tiga gula darah penting bersama dengan glukosa dan galaktosa, yang bisa langsung diserap ke aliran darah selama pencernaan. Fruktosa ditemukan oleh kimiawan Perancis Augustin-Pierre Dubrunfaut pada tahun 1847. Fruktosa murni rasanya sangat manis, warnanya putih, berbentuk kristal padat, dan sangat mudah larut dalam air Fruktosa ditemukan pada tanaman, terutama pada madu, pohon buah, bunga, beri dan sayuran. Di tanaman, fruktosa dapat berbentuk monosakarida dan/atau sebagai komponen dari sukrosa. Sukrosa merupakan molekul disakarida yang merupakan gabungan dari satu molekul glukosa dan satu molekul fruktosa.


2.  Disakarida dan oligosakarida

Disakarida merupakan karbohidrat yang terbentuk dari dua molekul monosakarida yang berikatan melalui gugus -OH dengan melepaskan molekul air. Contoh dari disakarida adalah sukrosa, laktosa, dan maltosa. Oligosakarida adalah polimer derajat polimerisasi 2 sampai 10 dan biasanya bersifat larut dalam air. Oligosakarida yang terdiri dari 2 molekul disebut disakarida, dan bila terdiri dari 3 molekul disebut triosa. Bila sukrosa (sakarosa atau gula tebu). Terdiri dari molekul glukosa dan fruktosa, laktosa terdiri dari molekul glukosa dan galaktosa. Polisakarida Polisakarida merupakan polimer molekul-molekul monosakarida yang dapat berantai lurus atau bercabang dan dapat dihidrolisis dengan enzim-enzim yang spesifik kerjanya.

3.  Polisakarida

Polisakarida merupakan karbohidrat yang terbentuk dari banyak sakarida sebagai monomernya. Rumus umum polisakarida yaitu C6(H10O5)n. Contoh polisakarida adalah selulosa, glikogen, dan amilum.

·         Uji Karbohidrat 
1. Uji Molisch
     Adalah uji untuk membuktikan adanya karbohidrat. Uji ini efektif untuk berbagai senyawa yang dapat di dehidrasi menjadi furfural atau substitusi furfural oleh asam sulfat pekat. Senyawa furfural akan membentuk kompleks dengan α-naftol yang dikandung pereaksi Molisch dengan memberikan warna ungu pada larutan.
2. Uji Benedict
    Adalah uji untuk membuktikan adanya gula pereduksi. Gula pereduksi adalah gula yang mengalami reaksi hidrolisis dan bisa diurai menjadi sedikitnya dua buah monosakarida. Karateristiknya tidak bisa larut atau bereaksi secara langsung dengan Benedict, contohnya semua golongan monosakarida, sedangkan gula non pereduksi struktur gulanya berbentuk siklik yang berarti bahwa hemiasetal dan hemiketalnya tidak berada dalam kesetimbangannya, contohnya fruktosa dan sukrosa. Dengan prinsip berdasarkan reduksi Cu2+ menjadi Cu+ yang mengendap sebagai Cu2O berwarna merah bata. Untuk menghindari pengendapan CuCO3 pada larutan natrium karbonat (reagen Benedict), maka ditambahkan asam sitrat. Larutan tembaga alkalis dapat direduksi oleh karbohidrat yang mempunyai gugus aldehid atau monoketon bebas, sehingga sukrosa yang tidak mengandung aldehid atau keton bebas tidak dapat mereduksi larutan Benedict.
3. Hidrolisis Pati
      Untuk mengidentifikasi hasil hidrolisis amilum digunakan larutan amilum 1%, larutan iodium, pereaksi Benedict, larutan HCl 2 N, Larutan NaOH 2%. Amilum ditambahkan dengan HCl lalu dipanaskan. Dilakukan uji iodium setiap 3 menit hingga warnanya berubah jadi kuning pucat. Kemudian larutan dihidrolisis lagi selama 5 menit lalu didinginkan dan dinetralkan dengan NaOH 2%,. Lalu diuji dengan pereaksi Benedict.
4. Uji Barfoed

   Adalah uji untuk membedakan monosakarida dan disakarida dengan mengontrol kondisi pH serta waktu pemanasan. Prinsipnya berdasarkan reduksi Cu2+ menjadi Cu+. Reagen Barfoed mengandung senyawa tembaga asetat.

5. Uji Seliwanoff

   Prinsipnya berdasarkan konversi fruktosa menjadi asam levulinat dan hidroksimetil furfural oleh asam hidroklorida panas dan terjadi kondensasi hidroksimetilfurfural dengan resorsinol yang menghasilkan senyawa berwarna merah, reaksi ini spesifik untuk ketosa. Sukrosa yang mudah dihidrolisis menjadi glukosa dan fruktosa akan memberikan reaksi positif dengan uji seliwanoff yang akan memberikan warna jingga pada larutan. 5. Uji Hidrolisis Pati
Pati dan iodium membentuk ikatan kompleks berwarna biru. Pati dalam suasana asam bila dipanaskan dapat terhidrolisis menjadi senyawa yang lebih sederhana, hasilnya diuji dengan iodium yang akan memberikan warna biru sampai tidak berwarna dan hasil akhir ditegaskan dengan uji Benedict.
6. Uji Iodium
    Karbohidrat golongan polisakarida akan memberikan reaksi dengan larutan   iodine  dan  memberikan  warna  spesifik  bergantung  pada  jenis karbohidratnya.  Amilose  dengan  iodine akan  berwarna  biru,  amilopektin dengan iodine akan berwarna merah violet, glikogen maupun dextrin dengan iodine akan berwarna coklat.
Uji ini dilakukan untuk menentukan polisakarida. Larutan uji dicampurkan dengan larutan iodium. Hasil positif ditandai dengan amilum dengan iodium berwarna biru, dan dekstrin dengan iodium berwarna merah anggur.
 7. Uji Osazon
     Semua karbohidrat yang mempunyai gugus aladehida atau keton bebas membentuk hidrazon atau osazon bila dipanaskan bersama fenilhidrazin berlebih. Osazon yang terjadi mempunyai bentuk kristal dan titik lebur yang spesifik. Osazon dari disakarida larut dalam air mendidih dan terbentuk kembali bila didinginkan. Namun, sukros tidak membentuk osazon karena gugus aldehida atau keton yang terikat pada monomernya sudah tidak bebas.  Sebaliknya, osazon monosakarida tidak larut dalam air mendidih.

8. Uji Asam Musat
       Dilakukan untuk membedakan antara glukosa dan galaktosa. Larutan uji dicampurkan dengan HNO3 pekat kemudian dipanaskan. Karbohidrat dengan asam nitrat pekat akan menghasilkan asam yang dapat larut. Namun, laktosa dan galaktosa menghasilkan asam musat yang dapat larut.
9. Hidrolisis Sukrosa
       Untuk mengidentifikasi hasil hidrolisis sukrosa digunakan larutan sukrosa 1%, pereaksi Benedict, pereaksi Seliwanoff, pereaksi Barfoed, larutan HCl pekat, larutan NaOH 2% sebagai bahannya. larutan sukrosa ditambahkan dengan HCl pekat lalu dipanaskan selama 45 menit. Setelah didinginkan dinetralkan dengan NaOH 2%. Lalu diuji dengan pereaksi Benedict, Seliwanoff, dan Barfoed.

2 komentar:

Haqqi mengatakan...

oh... jadi nitrat yang diserap oleh tumbuhan bisa diubah menjadi karbohidrat ya ? bisa tolong dijelaskan.. saya masih belum paham.. bisa beri contongnya?

Anonim mengatakan...

How to make money from playing slots - how to make money from playing
A simple example is the video poker game “Poker King”. Poker players try choegocasino to take bets at the table and they do this by 1xbet korean looking at cards หารายได้เสริม and winning

Posting Komentar